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ABSTRACT
Reflectance confocal microscopy is an emerging modal-

ity for dermatology applications, especially in-situ and bed-

side detection of skin cancers. Work to date has concen-

trated on hardware development and validation by clinicians

in comparison with standard histological staining. As this

technology gains acceptance, the development of automated

processing methods becomes more important. We concen-

trate here on detection of the dominant internal feature of the

skin, the epidermis/dermis boundary, a complex corrugated

3-dimensional layer marked by optically subtle changes and

features. We adopt a machine learning approach to this seg-

mentation problem, using a hierarchical multi-scale classifier

with sophisticated on-line feature selection, to minimize the

required expert labeling and maximize the range of potential

features in the face of high inter- and intra-subject variability

and low optical contrast. Initial results indicate the ability of

our approach to recover the complex 3-D boundary surface.

Index Terms— confocal microscopy, image segmenta-

tion, classification

1. INTRODUCTION

Skin cancer is the most common form of cancer in the U.S.

Clinical screening and diagnosis is based on biopsy followed

by histology. Biopsies are invasive, painful, destroy the site

and leave a scar. Confocal reflectance microscopy (CRM) is

a new modality for optical imaging of the skin in vivo and

shows potential for non-invasive clinical screening and diag-

nosis without biopsy. Nuclear and cellular detail is imaged

non-invasively with optical sectioning and μm-level resolu-

tion that is comparable to that of histology [1]. CRM is mov-

ing toward clinical application in dermatology for detection

of malignancies such as melanoma and basal cell carcinomas

[2, 3]. However, interpretation of these images is dependent
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on highly trained clinicians, and since they appear quite dif-

ferent from conventional stained pathology sections, signif-

icant clinician re-training is required. Thus, any automated

processing, even if only partial, which could aid diagnosis

would be a significant contribution to the utility of skin CRM.

However, as we describe below, interpretation of CRM im-

ages presents significant difficulty for automation.

As an initial target for automatic interpretation of CRM

images, in this paper we investigate semi-automatic local-

ization of the irregular three-dimensional junction between

the superficial epidermis and the underlying dermis in ac-

quired CRM image z-stacks. This is a meaningful target ap-

plication because it is both important and presents difficulties

such as low contrast and high variability which are typical

of CRM images of the skin. The localization of the Der-

mis/Epidermis junction (DEJ) is important for skin cancer

since pre-malignancies such as melanoma and basal cell car-

cinoma start at the DEJ and then advance to cancer later-

ally and/or invade deeper into dermis. The latter, deeper in-

vasion, is more serious than the initial superficially lateral

spread. Thus the DEJ is clinically important to evaluate. This

is also true for other tissue besides skin. Delineation of the

DEJ is visually difficult in grayscale monochromatic confo-

cal reflectance images (i.e., without any exogenous specific

stains), as the contrast between the deeper epidermis (basal

cell layer) and the underlying dermis is relatively low. Conse-

quently, visual and subjective detection of the junction is dif-

ficult for dermatologists, as noted in ongoing clinical studies

[2, 3]. In contrast, specific stains are used to provide cellu-

lar and nuclear-specific contrast in pathology methods. Egg

carton-like structure of the DEJ is illustrated in Fig. 1 (a). The

epidermis itself has a depth-dependent layered structure com-

posed of cells with different morphology at each layer, while

the upper dermis mostly contains collagen fibers and blood

vessels.

Factors which make the DEJ difficult to detect in CRM

images include not only the lack of reliable optical contrast at

this boundary but also the tremendous variability among sub-

jects and even, to some extent, within sites of the same sub-

ject. One critical factor is skin pigmentation, which depends

on melanin, also located at this boundary. Melanin provides

strong reflectance contrast where it is abundant, but in fair
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Fig. 1. (a) Skin: Epidermis, basal layer, junction and dermis

(b) CRM slice showing dermis and epidermis regions.

skin this contrast is almost absent, as illustrated in a CRM

image from a subject with fair skin in Fig. 1 (b). Our goal

is a method which can work across a range of skin pigmen-

tations, and therefore we have designed a processing scheme

which contains considerable flexibility to include a variety of

potential features.

Additional difficulties result from the nature of confocal

imaging in skin. In particular, we need to image to depths of

over 100 μm, and the hills and valleys of the boundary itself

can extend over a depth of 50 μm, which requires repeat-

edly increasing the illumination power as we image at greater

depth to maintain sufficient dynamic range. Moreover optical

aberrations increase at depth due to scattering, so the result-

ing images lose resolution, and of course axial resolution is

considerably worse than transverse resolution.

The approach we present below starts with some pre-

processing for normalization. We then localize the slices

which contain DEJ regions via a rapid 1D criterion. To then

segment these slices into epidermis and dermis, we require

that the user label several regions of dermis and epidermis

on a single image. Using those labeled regions, a superset of

texture features is extracted. Our method then automatically

selects the features with higher discriminant power and ap-

plies a hierarchical classification scheme. In particular, we

repeatedly subdivide the images into tiles up to a preset min-

imum size, attempting after each subdivision to classify the

tiles as dermis or epidermis. Unclassifiable tiles are subject to

further subdivision. In addition we incorporate the constraint

that the transition from epidermis to dermis is unidirectional

with increasing depth. We show initial results on data from

two subjects with the two fairest, i.e. most challenging, skin

types.

2. METHODS

A CRM stack from a single site consists of about 60 image

slices, where each slice is on the order of 1000× 1000 pixels,

with a pixel resolution of 0.5μm. The upper slices are com-

posed of only epidermis regions and the lower slices are com-

posed of only dermis. As a result the z-stack image collec-

tion for a single site is on the order of 60 MB. Given the low

contrast of the desired boundary, and large variability among

individuals and acquisitions, we require a large set of features

and yet a computationally efficient processing scheme.

Our algorithm is semi-automatic; typically the expert will

label a small initial set of dermis and epidermis regions in one

slice which contains a significant number of regions of both

types; if necessary these regions can come from two near-by

slices. The training data used to initiate feature selection

comes from these labeled regions. To augment this train-

ing data, additional epidermis data is automatically collected

from regions in a small number of slices directly above the

expert-selected epidermis regions, and similarly additional

dermis data from a small number of slices in regions directly

below the expert-selected dermis regions. The rest of the pro-

cessing proceeds in an automated fashion using this training

data.

In order to trade-off feature reliability vs. detection reso-

lution, we use a multi-scale approach. We start by applying a

coarse-level classification along the optical axis (z-direction),

which trims off the pure epidermis and pure dermis slices.

We, then, apply a multi-scale classification within each of the

remaining mixed dermis/epidermis slices using an adaptive

feature selection methodology.

Before beginning this process, we perform pre-processing

steps which involve manually masking out uninteresting fea-

tures such as wrinkles and sweat glands and normalization to

compensate for both loss of illumination intensity with depth

and staggered increases in applied laser power. The normal-

ization is based on standard histogram matching [4].

2.1. Coarse-Level Classification in the z-Direction

The goal in this step is to detect two boundaries: the lower

boundary of pure epidermis slices and the upper boundary of

pure dermis slices. We extract features (the same features de-

scribed in Sec. 2.3) from each image slice and construct a

data matrix from these features for all slices in the stack. We

apply PCA [5] to the data matrix and represent each image

slice by the projection of the feature vector from a slice onto

the first principal component. We then model these 1-D data

across the z-stack by a 1-D autoregressive (AR) model of or-

der two. We calculate the fit error between the AR predictions

and the true value. The two highest peaks in this error vector

indicates the potential boundary locations.

2.2. Multi-Scale Classification Within Each Slice

First we describe the multi-scale hierarchy we use, followed

by a description of the classification scheme applied at each

hierarchy level. At the coarsest level of the hierarchy, we clas-

sify tiles of size smax×smax (here, 100×100) pixels. At this

level, some tiles contain both epidermis and dermis regions,

so we include a third class, mixed dermis/epidermis, along

with dermis and epidermis classes. After classification at the
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coarsest level, we split each tile into four smaller tiles of size

smax/2×smax/2. At each scale i, we use a specific classifier

trained for that scale to classify the tiles at scale i into one of

these three classes. If a tile is classified as mixed, we split

it further into four smaller tiles. If the tile is classified as a

pure dermis or pure epidermis, we check for consistency with

the next level down the finer resolution tree to be sure that it

is indeed pure and not mixed. If the finer level classification

is consistent with the previous level, we do not split further;

otherwise we continue splitting. We continue this process un-

til we reach our finest level with tile size smin × smin. Here,

we set smin = 25 (12.5 μm) because, beyond this scale, we

lose the characteristic features containing information about

the intrinsic structures in the tissue.

We train a different classifier for each scale. We investi-

gated two classification approaches. The first was an ensem-

ble of 1-D support vector machines (SVM) [6] based on each

feature alone, where the final classification was obtained by

majority vote. The second method was SVM using all the se-

lected features. (We describe the features and how features

were selected in the next subsection.) We trained our SVM

classifier on the two labeled classes, dermis and epidermis.

We modified SVM to include the mixed class by assigning

points located between the support vectors to that class. The

ensemble of single feature SVM method performed better on

this data; due to space constraints, we report only those results

here.

2.3. Automatic Feature Selection

We used a number of texture features to capture varying tex-

ture structures to enhance the classifier’s ability to perform

well across different skin pigmentations. We used as fea-

tures statistics, namely mean, variance, skewness, and kur-

tosis, energy calculated from an entropy filter output, gray

level co-occurrence matrix contrast, energy, correlation and

homogeneity, features obtained from a stationary wavelet de-

composition up to level 3 (energy, entropy, variance) [7] and

features like the average power spectrum in a relevant fre-

quency band [8]. Note that the feature set is computed for

each scale.

At each scale we customize this large set of features to

the current image stack by automatically selecting a subset

of non-redundant features that best discriminates the training

data. Since we automatically select features on-line, we need

an efficient selection procedure. We tested sequential forward

search using SVM as the classifier, with the selection crite-

rion as the margin between the separating hyper-planes. This

wrapper approach gave high accuracy, but this process is slow

when the feature set is large. Thus, we also tested a faster fil-

ter method, the correlation based filter approach [9] which is

based on two steps: 1) Find the features that are relevant to

the class, 2) find the subset of the relevant features that is least

redundant to the other relevant features. For the first step, we

use Fisher’s class separation distance (Dx(c1, c2) (Eq. 1)) for

feature x between class 1 and class 2, as the measure of rele-

vance, instead of using correlation between features and class,

because Fisher’s criterion not only finds the features relevant

to the class but also keeps the more separable ones. The fil-

ter method searches for features one at a time. The first step

selects the features with Dx larger then a certain threshold;

the second step keeps the features which are not highly cor-

related with the other features by evaluating the correlation

coefficient between each pair (x, y).

Dx(c1, c2) =
|μc1 − μc2 |√

σ2
c1

+ σ2
c2

(1)

3. RESULTS

We report results for data from two subjects with fair skin

types—skin types I and II. These are the hardest skin types in

which to find the DEJ as noted earlier. We used ten 100×100
manually selected training regions, 5 dermis and 5 epider-

mis, augmented as described above by data from regions in

10 slices above and 10 slices below the labeled epidermis and

dermis regions respectively. Thresholds for class separation

and correlation were set off-line. The transition regions for

these two data sets were found by the z-direction classifica-

tion, as described, to be between slices 6 and 44 (out of 75
total) for the first data set, and between 23 and 46 (out of 60)

for the second data set.

Fig. 2 shows six representative segmented slices, three

from data set 1 (left column) and three from data set 2 (right

column). The regions classified as epidermis are outlined with

green lines and shaded with a light-colored overlay. Fig. 2(b)

is the expert-segmented slice for this data set, and the white

lines show the hand-drawn boundaries of the dermis regions

in this slice. The dark regions in all images are wrinkles.

To show the 3-D boundary that results from our segmenta-

tion, we visualize the detected surface in Fig. 3 for both data

sets. This surface is generated by finding the slice number

for each tile where the transition from epidermis to dermis

takes place. We then interpolate the 3-D surface to create a

smoother boundary. In addition, we truncate the graph below

for better visibility of the boundary (which otherwise would

be dominated by the dark wrinkles).

We note that the detection results in each slice correspond

well to visual inspection (as evidenced by the agreement with

the expert-labeled slice in Fig. 2). The 3-D boundary shown

in Fig. 3 has the expected “egg-carton” shape.

4. CONCLUSION AND FUTURE WORK

A hierarchical multi-scale classification algorithm with auto-

matically selected adapted features are used to localize the

DEJ. After roughly locating the junction layer location in the
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Fig. 2. Example 2-D images of classification results for both

data sets. Data set 1 is in the left column and data set 2 in the

right column. The slices shown are numbers 20 (a), 25 (c),

and 30 (e) for data set 1 and numbers 32 (b), 45 (d), 50 (e) for

data set 2.

z-direction, junction layer slices are classified in 2-D by split-

ting them into tiles at each scale. Due to the low contrast

between structures, unlike histology images where stains are

used, in CRM images it is very difficult to find reliable fea-

tures, hence choosing the right features and adding more prior

knowledge to the method is required for adequate results. A

possible approach for improvement is to use more specific

features at the cellular scale, since cellular structure in the

epidermis vs. blurry collagen distributed in the dermis is an

important visual clue for discriminating these regions.
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